	Note Title
prog port of arright: due Feb 20/21 Input: accupt vertices via a file. Output: display boly on occuen demo the brid with a pre-arright MATLAB MATLAB	Acture 11

between Cells Anodes are	whose union b) Build a "	non-over lapping megion	2) GII decomposition
Connectivity of graph): ; is are allowed and edges between	adjacency rulationship	free into a union of bugions called [alls];	osition Appoach

What some constitutes a canople	will be Colled a chargel	a dja ent cells Connecting qui	hodes supresent if the Gents are adjacent. A seq
CII >	del " A Jooth	Vi and off	corres ponding

Cell decomposition	(with not onal coffs)	Recall that these one		General Cox:
method for	of foly no maals	Jennialy. Deta.	are ser ar	<u> </u>

Com s lowity Schworf 3 de com posing Grosse A poor imate Gul the present Collin's Decom (sori From CN S 29 t showing t tfree as a pre-direct shape, Decom > osition ころにの みれに union of d: dim of

for low-din	t Docu	Draw two of	3) provides little	2) casier to im	often "rectang
C-space C-space unful	das oxp	Grea	indicat into	1) lement	G lorid "

Obstack

Chapter 6: Approximate Cell Decomposition

ted, the associated connectivity graph, denoted by G_i , is searched for hannel connecting qinit to qgoal.

simple first-cut planning algorithm is the following:

- 1. Compute a rectangloid decomposition \mathcal{P}_1 of Ω . Set i to 1.
- 2. Search the connectivity graph G_i associated with the decomposition \mathcal{P}_i for a channel connecting the initial cell containing search is an E-channel, return success. If it is an M-channel, \mathbf{q}_{init} to the goal cell containing \mathbf{q}_{goal} . If the outcome of the proceed to the next step. Otherwise, return failure.
- 3. Let Π_i be the M-channel generated at Step 2. Set \mathcal{P}_{i+1} to decomposition \mathcal{P}^{κ} of κ and set \mathcal{P}_{i+1} to $[\mathcal{P}_{i+1}\setminus\{\kappa\}]\cup\mathcal{P}^{\kappa}$. Set \mathcal{P}_{i} . For every MIXED cell κ in Π_{i} , compute a rectangloid i to i+1. Go to Step 2.

he search of G_i at Step 2 can be guided by various heuristics. In

contour) in a two-dimensional space. It connects the two cells that contain the otherwise it is said to be an M-channel. This figure shows an E-channel (striped or MIXED. If all the cells are EMPTY the channel is said to be an E-channel, Figure 1. A channel is a sequence of adjacent cells which are either EMPTY

1100 to Dubdividue Cells? two man and Divide & Label divide a misced Coll Cabel the

subset of the corresponding tree. decomposition at depth 3 of a simple configuration space. Figure b shows a four new rectangloid cells of equal dimensions. Figure a shows the quadtree and the generated MIXED cells into smaller cells. The division of a cell creates

stacles. polygon that can translate us input problems [Zhu and oy a planner based on the

each edge of k into two dren of a cell k have the

of a two-dimensional f m = 3, it is called an

Figure 6. This figure illustrates the simplification of a C-sentence when new cells are created and labeled. The sentence $S_{\kappa'}=e_1 \vee (e_2 \wedge e_3)$ is associated four new cells denoted by κ_1 through κ_4 are generated. Both κ_1 and κ_2 are with the MIXED cell κ' . When this cell is decomposed (in a quadtree fashion),

the xy-plane. When the C-surface is of type A, the projection is the reg swept out by a line rotating around an obstacle vertex b_j (Figure a). When $a(\theta)x + b(\theta)y + c(\theta) = 0$ which is comprised in the angular interval $[\theta_l, \theta_l']$ is divides the plane into three regions designated by OUTSIDE, INSIDE, ¿ line parallel to an obstacle edge $E_j^{\mathcal{B}}$ (Figure b). In both cases, the project C-surface is of type B, the projection is the region swept out by a translat Figure 8. This figure illustrates the projection of the portion of the C-surf

ORIENTATION SLICING: = H pproximat a proach

(b)